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Abstract—A means of theoretically predicting the ultimate tensile strength of a unidirectional, fiber-
reinforced ceramic which undergoes multiple matrix cracking is presented. The analysis, which
represents an elaboration of a theory recently presented by the authors, accounts for the presence
of the matrix cracks, as well as for the random failure of individual fibers that occur with increasing
likelihood as the applied stress is increased. The key material parameters are the fiber strength and
strength variability, and the interfacial shear strength. In addition, the prediction can account for
stress concentrations at points ilong the fiber surface where the matrix cracks impinge. Comparisons
with experimental data and sensitivity analyses show that it is important to account for stress
concentrations and to have an accurate value for the in situ fiber strength.

INTRODUCTION

Ceramic matrix composites appear to be gaining increased attention in the scarch for high
strength, high temperature materials. In addition, many of the possible applications involve
subjecting the material to hostile and aggressive environments ; hence, there must be con-
fidence that strength can be maintained under a varicty of conditions. Of great concern
currently is the influence of the environment on the fiber-matrix interface, which is often
cited as a key determinant of composite strength.,

This is a challenging problem, however, as the dependence of the composite strength
on the interface propertics is quite complex. In some systems, for example reaction bonded
silicon nitride reinforced by silicon carbide monofilaments, oxidation which reduces the
interfacial shear strength causes the composite strength to diminish (Bhatt, 1989). In other
systems, for example lithium alumino-silicate reinforced by silicon carbide fibers, oxidation
which increases the interfacial shear strength also causes the composite strength to diminish
(Brennan, 1988). Finally, a silicon carbide fiber-reinforced silicon carbide exhibits first
increasing and then decreasing tensile strength as a function of interfacial shear strength
{Lowden, 1990). Clearly, these complicated observations will require a more comprehensive
theory of composite strength than exists to date. One such theory is offered in the present
paper, which elaborates substantially upon a model of ultimate tensile strength that was
recently presented by the authors (Schwietert and Steif, 1990a).

BACKGROUND

In order to appreciate the theory elaborated upon here, it is useful to consider pre-
viously proposed means of computing the ultimate strength, o7, of a fiber composite.
Perhaps the simplest estimate of a composite's strength is the rule of mixtures. For a brittle-
matrix composite in which the matrix fails first, the rule of mixtures would give the strength
us

Curs = Vja'f n

where 17 is the fiber volume fraction and ¢, is the mean strength of fibers. Equation (1)
would be an accurate estimate of the strength if the fibers all had identical strengths, and
if the composite failure coincided with all fibers simultaneously breaking on a single matrix-
crack plane.
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Unfortunately, the assumptions underlying the rule of mixtures estimate are at odds
with reality. First, real fibers exhibit a statistical vanation in strength, which causes fiber
breaks to be dispersed throughout the composite, as evidenced by the variety of pull-out
lengths: failure generally does not occur on a single crack plane. Secondly. the statistical
variation in strength depends on the fiber length. If 0, were taken to be the mean strength
of fibers equal in length to the gauge length, then (1) would imply that the composite
strength varies with gauge length to the same degree as the mean fiber strength varies with
fiber fength.

Consider. for example. the Weibull strength distribution as commonly apptied to fibers.
According to this distribution. the probability £(¢) de that a fiber of length L has a strength
between ¢ and ¢ +do is given by

P(0)do = Lamo™ ' exp[— Lxo™] do

where % and s are the standard Weibull parameters. the latter being refated to the strength
variability. (This probability can be derived from a flaw function which is introduced
below.) The corresponding mean fiber strength is then given by

o = ra +\‘lx‘/,:,'” 2
(xL)

where I'(x) is the complete Gamma {function with T(1) = 1. For fibers commonly in use,

the Weibull modulus mis often in the range of 3 < m < 9, in which case there is a significant

variiation of fiber strength with length. However, there seems to be no experimental evidence

that the composite strength is significantly size-dependent, in general.

A second means of estimating composite strength is to consider the composite as
simply a bundle of fibers. In the classic bundle calculation, cach fiber in the bundle is
assumed to have the identical statistical distribution in strength, Furthermore, itis assumed
that the load given up by a broken fiber in a bundle 1s taken up equally by the remaining
intact fibers. For a Weibull distribution of fiber strengths, the asymptotic mean strength of
a fiber bundle as the number of fibers in the bundle tends to infinity, 64, is given by (Danicels,
1945)

I
T Q3
57 (e L) )
which is always less than the mean strength o,. If a composite with fiber volume fraction
¥, is treated as a fiber bundle, then its strength (assuming a large number of fibers) would

be
Ty = V;”u~ 4

One particular assumption in the bundle model practically prohibits its application to
estimating the composite strength. Once a fiber in a bundie breaks, that fiber is assumed to
carry no load whatsocver ; by contrast, a broken fiber in a composite regains its load with
distance from the break. This situation was salvaged by Rosen’s (1965) ingenious chain of
bundles model. This model involves, first, the notion of a fiber™s ineflective length. Because
the interfacial shear stress must act over some fength in order to transfer the load to the
fibers from the matrix, a portion of each fiber (ncar the fiber ends) is ineffective. More
pertinent to composite strength is the ineffective portion of the fiber immediately adjacent
to a fiber break. In reality, the load is gradually transferred from the matrix back to the
fiber as a function of distance from the fiber break. Yet. it is useful to define an ineffective
length as that portion of the fiber which carrics less than, say, 90% of the fult fiber load.

Rosen suggested that. insofar as strength is concerned. a composite is like a series or
a chain of bundles. each bundlc having length equal to the ineffective length (a schematic
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Fig. Ib. Schematic of Rosen's chain of bundles.

of this model is given in Fig. 1). From this suggestion, one can readily compute the
composite strength to be

Y%
(ameLipr)' ™

&)

Tuyrs =

where L is the ineffective length. {This estimate assumes an infinite number of fibers,
which implies no statistical variability in the bundle strength ; since each bundle in the chain
has identical strength, the chain is precisely as strong as each bundle.) Clearly, this chain
of bundles is not preciscly the same as a composite in which fiber breaks appear scattered
throughout the material. Nevertheless, the predictions of Rosen's model do agree with our
intuition regarding one important feature: the more quickly the load can be transferred
back to the fibers near a break (the shorter the ineflective length), the less detrimental will
be the cffect of the break on the composite’s strength and, therefore, the higher will be the
composite strength.

Two significant lines of research arose from Rosen’s model. both of which implicitly
question the validity of the assumptions which lead to eqn (5). First. there has been extensive
consideration of the consequences of the fact that the number of fibers in a composite is
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actually finite (Phoenix and Tavlor, 1973; Smith. 1982: McCariney and Smith, 1983).
When a fiber bundle has a finite number of fibers, it has a distribution in strength, with
complicated consequences for the chain of bundles. In a second line of research. the
assumption of equal load sharing. which is implicit in the calculation of bundle strength,
has been abandoned (see. for example, Zweben and Rosen, 1970 Argon, 1972). The
opposite of equal load sharing is “"local load sharing™, in which the load “given up” by a
breaking fiber is taken up mostly or exclusively by its neighbors, implying that fiber breaks
might eventually tend 1o cluster.

But how valid are the assumptions of Rosen’s basic chain-of-bundles model. in par-
ticular the issue of equal versus local load sharing? Consideration of typical fracture surfaces
of ceramic-matrix composites under tensile loading suggests an answer to this question. Of
intervst, in particular. are tough, ceramic-nuttrix composites which exhibit multiple matrix
cracking : with increased loading these composites eventually reach their ultimate strength
followed by extensive pull-out. Generally, the fracture of these materials appears to coincide
with continued separation of the composite across a single matrix-crack plane. Further-
more. a perusal of the pulled out fibers protruding from each half of the failed specimen
often reveals that the pull-out lengths of ditferent fibers are statistically independent of one
another (compare the schematics in Figs 2a and b). If there were to be a correlation between
the lengths of nearby fibers (as in Fig. 2a). then one would strongly suspect some degree
of tocal load sharing: & break in one fiber would tend to produce a break roughly in the
same focation of a neighboring fiber,

Fig. Za. Schematic of rmllud out libers under conditions of Tocal load sharing.

Fig. 2b. Schematic of pulled vut fibers under conditions of equal load sharing.
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Therefore, it seems reasonable to retain the assumption of equal load sharing. at least
when applying a strength theory to composites in which the fiber pull-out lengths have the
appearance of being statistically independent. In addition. we take the view, which will be
borne out below, that much can be learned of the dependence of composite strength
on significant parameters (on interface. for example) without introducing the additional
complexities associated with the finiteness of the number of fibers, Hence, we are returning
to the original assumptions of Rosen’s simple chain-of-bundles model. Within these assump-
tions, however, we show that the ultimate tensile strength can be estimated in a way that
remains faithful to the actual distribution of fiber breaks (as they appear schematically in
Fig. 1a), without resorting to Rosen’s reconfiguration of the composite into a chain of
bundles. Our theory for tensile strength. which is an elaboration of one proposed recently
by the authors (Schwietert and Steif, 1990a), is quite general. at least within the assumptions
thus far discussed ; as will be seen, it is capable of explaining a significant portion of the
complicated dependence of strength on interface. A related approach has also been taken
by Sutcu (1989), who tacitly begins at the same point as our eqn (6) ; the difference between
the two approaches is indicated below.

THEORY

A unidirectionally reinforced. fiber composite, which possesses a large (essentially
infinite) number of long fibers and is subjected to uniaxial tension parallel to the fibers, is
contemplated (see Fig. 3). It is assumed that at some level of loading matrix cracks begin
to form normal to the fiber direction, and, with increasing load. the matrix cracks eventually
saturate. At saturation, the matrix cracks are all perfectly flat, equally spaced and spanncd
by intact fibers. Thereafter, the only damage that occurs is in the form of fiber breaks
(interface debonding can occur and is handled implicitly, as will be scen below). All fibers
have the same statistical distribution in strength, and their failure is governed by the
commonly adopted weakest link law. Henee, fiber breaks will appear dispersed throughout
the composite. As fiber breaks accumulate, they continually diminish the load carrying
capacity of the composite. Such a composite, having many fibers which are sufficiently long,
has a definite ultimate strength which is independent of the specimen length. Our goal is to
compute the ultimate strength of the composite.

¥ y y ¥

Fig. 3. Schematic of a composite under an average axial stress #,,, which has sustained multiple
matrix cracking.



304 H. R. Scuwieterr and P. S, Sten

The present theory envisions a standard tension test in which the grips which hold the
specimen are separated at. say. a constant rate. The average stress in the specimen increases
from zero up to a maximum stress and then decreases. The ultimate strength of the
composite is found by computing the cross-sectionally averaged tensile stress in the com-
posite at each instant of the tension test. The maximum value of this average tensile stress
is our prediction of the ultimate strength. However, such a procedure requires a parameter
which increases monotonically as the test proceeds (like the average strain).

A suitable parameter is available if we are prepared to generalize the notion of “equal
load sharing™ as follows. (In the ensuing discussion. the following convention is adopted :
unless otherwise indicated. the stress at a point in a fiber means the longitudinal stress
averaged over the fiber cross-section at the point.) It is assumed that. at a given remote
strain, the stress distribution along a fiber is dependent only on the positions of the matrix
cracks that it spans and on the longitudinal positions of irs breaks: however. it is nor
dependent on the positions of breaks in neighboring fibers. This implies that all insacr fibers
have the same distribution of stress along their lengths. Since the stress in a fiber increases
monotonically in a tensile test as long as it remains intact. we can parameterize the tensile
test by the stress at some point in an intact fiber. Specificaily, the stress in an intact fiber at
a matrix—crack plane, which is denoted by o,. is chosen to parameterize the test. As shown
below. all quantities necessary for computing the average tensile stress in the specimen can
be found as functions of g,.

Since the average tensile stress in the specimen is the same at all planes, we can evaluate
that stress on any plane that is convenient, in particular on one of the matrix crack planes
(which are perfectly flat and equally spaced). This average tensile stress, a,.,. which is the
average of the stresses carried by all the fibers across the matnix crack, can be written as

& | R
Tper = V/ . Z (o), + . Z (“n),} (6)
:\,, 1 z\l,, !

where NV, s the total number of fibers in the specimen, N, is the number of fibers in the
specimen that are intact, and Ny is the number of fibers in the specimen that are broken.
(o), represents the tensile stress carvied by the jth intact fiber at the plane of a matrix
crack ; consistent with the generalization of equal toad sharing given above, (a,), = o, for
all /. (65), 1s the tensile stress carried by the jth broken fiber at the plane of u matrix crack.

Were the contemplated specimen to be of finite size, the various quantitics that appear
in (6) would be random variables ; since we have assumed an infinite number of fibers, these
quantities have definite values for a given ¢,. This is because the probuabilities computed
below with the weakest link theory can be translated into fractions when the number of
fibers is infinite. Computing g, from eqn {6) requires the spatial distribution of fiber breaks,
as well as the fiber stresses at the matrix-crack plane, given the position of the fiber breaks.

To explain how the various guantitics in (6) are computed in terms of . it s useful
to introduce the following stress distributions. First, we define 6,(2: g,) to be the stress at
position - in a fiber with no breaks; hence, by definition, 6,{0:06,) = 4,. when - =0
coincides with a matrix-crack plane. The variation 6,(z: o/} reflects the foad transfer to
and from the fibers associated with the periodic matrix cracks : accordingly. a,(z: o)) will
have the same periodicity in = as do the matrix cracks. For broken fibers, one can define a
set of stress distributions in which 6,(2,. 25, . ... 2. 22 6/) is the stress at the point Zin a fiber
that has breaks at the points =, (j = 1,2,... k). It is crucial to note that, in keeping with
our generalization of the cqual load sharing rule, the stress in a fiber depends only on the
instant in the loading history (#,) and on the position of irs breaks, but not on the positions
of its neighbor’s breaks.

It is also important to point out that the actual functional forms of 5,(z:0) and
a.(21. 20 .. 2. 20 o)) are not provided by this theory: they would be found from stress
analyses involving fibers, matrix cracks and fiber breaks. This theory does, however, allow
one to compute the ultimate strength, assuming the distributions a,(z:0,) and
(21 2. ... 2. 2) are known. This is quite valuable from a practical poit of view, as very
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reasonable approximate stress distributions can be postulated based on one-dimensional
analyses. Furthermore, as the results of more accurate analyses of fiber stresses become
available, they can be incorporated into the theory via 4(z; 0;) and g, (z,.z2,.... 2. 2. 6)).

In fact, in order to orient the reader, the specific forms for 4(=; ¢,) and ¢,(z,,2; 6/)
which will be assumed for the numerical calculations are presented here, even though the
equations from which the strength will be calculated will be given explicitly in terms of
6y(z:0,) and 6,(z,.z: ;). The specific forms, which are based on the assumption of a
constant interfacial shear stress, are given by:

5
oo(z10)) =0,— (:l:r,m 0<z<d) (7a)
oo(z:0y)
g.(z.2:06,) = ming?2 (z<zy) (7b)
;(:I —:)rml

where = is measured from the matrix—crack plane, the fiber break at =, is assumed to be in
o1 > 0, 2d is the matrix—crack spacing (see Fig. 3). 1., is the interfacial shear stress, and a
is the fiber radius. Actually, 6,(=: g,) is the periodic extension of eqn (7a) which is consistent
with the periodicity of the matrix cracks; thus, it corresponds to the familiar sawtooth
distribution of stress. The form chosen for 6,(z,.z: g;) reflects linear load transfer away
from the break until the stress reaches a,(c: ;). the level prevailing in the undisturbed
portion of the composite. Thus, if it is nceded. an analogous expression for = > = may be
derived.

As mentioned above, the distribution of fibers breaks is determined via the assumption
of a weakest link law of fiber strength. Accordingly, it is assumed that there is a flaw
function n(a) which is detined as follows : n(a) d= is the probability that a segment of length
dz has broken at or below the stress . Note that, in the common application of weakest
link statistics to fibers, the fiber is treated as a onc-dimensional continuum: instead of
focusing on an clemental volume dV, we focus on an clemental length dz. We consider the
particular case of the Weibull distribution in which n(a) = a2g™. With the assumption of
weakest link failure, determination of the necessary quantities in eqn (6) is a problem of
combinatorics. An important ingredient in the theory is the distribution of fiber breaks;
our method follows that of Oh and Finnie (1970) for predicting fracture locations. Details
of the specific combinatorial arguments are presented in Schwietert and Steif (1990a) ; only
abbreviated derivations are given here.

The contribution of the intact fibers to the load transmitted across the matrix-crack
plane is given by :

N L
o o), =a CXP[—J. n(oo(z; 0/))d:] (®)
Nl',,] L

where 2L is the composite specimen length. [Below, we explain why the integration limits
differ from that in Schwictert and Steif (1990a).] This expression is arrived at by the usual
argument that a length of fiber is intact if every one of its constituent segments is intact.

To compute the contribution of the broken fibers to the load transmitted across the
matrix~crack plane, consider first the fibers that are broken once up to the stress g, ; there
are Ny such fibers and their contribution is:

| N, a, (L. L - .
‘V; Zl (O'I!)/ =0, J; f . exp [_J‘[ '1(0'0(:§ a/l))d:}MII(:l)d:| dﬂ“. (9)

do,,

A portion of this multiple integral, namely
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L ‘
exp [“J n(ea(z; Un))d:]c'i“'ﬂg‘[(f" 1)) dz, doy,
L do,,
corresponds to the probability of a fiber being intact up to a stress 4,,. and then failing in
Iy < 1< zy+dz; during the stress increment do,,: this is identical 1o Oh and Finnie's
equation (5). The function A(z)) [which is unrelated to Oh and Finnie's probability density
o, 3] is defined to be 6,(z.0:g,) 6, Therefore. the product #(=,)7, has the tollowing
interpretation : it is the stress at the matrix-crack plane in a fiber which has a single break
at z,. From o, onwards, this broken fiber transmits a stress f1(2,)a, across the plane = = 0.
In general. /1(z,) will depend on ¢, even though o, does not appear explicitly as an argument.
as can be seen from the definition (7b). The contribution duc to the once broken fibers.
given by eqn (9), has a similar, though not identical, counterpart in Sutcu’s (1989) theory
another notable difference in the theories is that his length, a sampling length. increases
with the applied stress or with g,

Similar combinatorial arguments can be used to find the contribution of the .V, fibers
that are broken twice up to the stress g, ; the result is )

A%
l a. , l "~ L d o
o 2 (), =0:J ( exp[~J n(frn(:':au))d:’} Molzy: 0nil)
{ i -1

Ne o 0 Jen da,,

e [ o i LRI
X {J J cxp[—J\ Rin(a (" z 1o, ) —mlo (27 o, ))) d:"}(”(m( l. t )
LI 2 ) . U, »

xHima(z, 2500, —nlag(za o, D)~z 0 dzs day {‘(i:, do,, (1)
}

where
Rix x> |
=10 <0 (h
and
I x>0
-} e b
Hv {o X <0, (=

The second term of force balance (6), that is the contribution due to the broken fibers.
is tuken to be the sum of (9) and (10}, meaning that up to two breaks in a fiber are permitted.
More accurately, if the first break occurs at zy, then we allow for the possibility of another
break at 2., where — 2, < 25 < 2. Such fibers are loosely referred to as being “twice broken™
fibers ; strictly speaking, they may have broken more than twice, but these additional breaks
are farther away from the matrix-crack plane than is the break at z.. Similarly, a “once
broken™ fiber is one in which the very first break (which was at 2, remains the break that
is closest to the matrix plane. The effects of fiber breaks closer to the matrix crack plane
than -, ("thrice broken™ fibers, etc.) are not included in these caleulations. In practice, it
is generally unnecessary to consider more than one break in the length L this was discovered
through trial runs in which up to two breaks were included in the calculations.

Note that A=), which is connected with ¢,{z,.z: g,). appears in (10}, while higher
order distributions, in particular .(z,, 23,0 ;). do not. This comes from thc tacit, though
unnecessary, assumption that (o), depends only on the break which is closest to the matrix-
crack plane. This is tantamount to assuming that o.(z.zs,....2%.0:0)) = ¢, (Cn. 05 6)).
where =, is equal to the =, (j = 1,2,..., k) which has the minimum absolute value. Since
the stress distributions are derived from simple shear lag analyses, there seems to be no
obvious way of incorporating the effect of a farther break. If more refined stress distributions
become available, however, then (10) could be modified to include this effect. In practice.
the integrals in (8), (9) and (10) were evaluated numerically, using small increments in 4,
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As defined earlier, 2L is the length of the specimen. There is another interpretation of
L. which is based on its appearance as the limit of spatial integration in eqns (8). (9) and
(10). Imagine the specimen to be longer than 2L. In using the above equations to compute
the stress acting across the matrix—crack plane at - = 0, we are, in effect. only accounting
for fiber breaks which appear in the region — L < = < L. Due to the transfer of load back
to the fiber with distance from a break. one expects breaks which are very far from the
matrix—crack plane at - = 0 to have little influence. Consequently. increasing the parameter
L beyond a certain extent—which may still be much less than the actual specimen length—
should have practically no effect on the predicted ultimate strength. In fact. this will be
borne out by the results presented below : the predicted ultimate strength will be found to
be independent of L. provided L is sufficiently long.

The method presented here may be contrasted with our previous work (Schwietert and
Steif, 1990a). where only breaks within one matrix—crack spacing were considered. That
was clearly insufficient, and the error thereby incurred will be seen below. It is important to
emphasize that this theory eliminates the necessity of invoking an ineffective length which
features in Rosen’s (1965) theory. Sutcu's (1989) theory tacitly begins with a force balance
like (6). and results in expressions that are similar to (8) and (9). One essential difference
is that his evaluation of the contributions due to intact and broken fibers requires choosing
a sampling length, which is unnecessary here. Ideally, one wishes to have a theory which
predicts the ultimate strength based only on the fiber strength statistics and on the interfacial
shear strength. The present theory does precisely this : no length scales need to be explicitly
introduced. The length which consistently appears in other theories, for example Sutcu’s
sampling length which is the maximum length of fiber that can be pulled out, is implicitly
cembedded in our eqn (7b). 1t is related to the distance from the fiber break at which our
expression for the stress in a broken fiber changes from the linear load transfer proportional
to 1, near the break to the undisturbed periodic stress distribution ,(z; ;). Other than
incorporating the piccewise nature of ¢, (2,22 a,) properly into (9) and (10), however, we
never need to invoke this length.,

Finally, we introduce an additional clement which is crucial to the theory. At the
outsct, the convention was adopted that “fiber stress™ denotes the longitudinal stress
averaged over the fiber cross-section. Since all the formulae involve only this averaged fiber
stress, any deviations from uniformity would have been lost to the theory. Imagine that the
stress over the fiber cross-section were very different from uniform : would one expect this
to make any difference? The fiber stress enters the formulie for the net stress in two distinet
ways: (i) as contributing to the load transmitted across the matrix—crack plane and (ii)
through the flaw function n(a) which determines the probability of a break. Since o, is the
stress averaged over the specimen cross-section, it surely can be determined from the load,
or average stress, contributed by each fiber. On the other hand, following the suggestion of
Sutcu (1989), we contemplate the possibility that the distribution of stress over the tiber
cross-section, and not just the average, can seriously affect the probability of a break.

To see this, recall that fiber strength is generally thought to be controlled by surface
flaws. Hence, the tensile stress in the outer part (ncar the surface) of the fiber would scem
to be more critical to fiber strength than would the stress near the fiber core. This is clearly
not an issue in the normal strength testing of fibers, in which casc the stress is essentially
uniform tension (at least in the gauge section). Why should one imagine that the stress in
the fiber is ever much different from uniform? Because the fibers are spanning matrix cracks,
and the matrix cracks impinge, in turn, upon the fibers. Hence, not only is the stress non-
uniform, it might even be singular, at least within the theory of linear clasticity. One means
of accounting for the impinging matrix cracks might be to do a fracture mechanics analysis
involving the usual energy release rates.

Since the interfaces in composites which suffer multiple matrix cracking are weak,
however, it would appear necessary to account for this weakness ; surely the slippage at the
interface has a blunting effect on the matrix cracks. In fact, the influence of a slipping
interface on impinging cracks has been the subject of intensive study by the authors and
co-workers (Dollar and Steif, 1989, 1991 ; Schwietert and Steif, 1989, 1990b). We have
found that the stress concentrating power of such cracks depends sensitively on the character

8A3 28:3-D
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of the interface. Even though the precise magnitude of the stress enhancement is not yet
known for the relevant crack configuration, it still seems appropriate to examine the possible
effect of an enhanced stress near the fiber surface on the predicted ultimate strength of the
composite. It is our belief that much of the complicated dependence of ultimate strength
on the interface can be explained by appealing to the stress enhancement associated with
the matrix cracks.

We account for the stress enhancement simply by modifying the stress distribution
ao(z: o) as follows;

¥ -
O~ ~ TTim —E—a,(ﬁ - 1)(}
i d, {0 <z-<d).

2

~

Gr— = ITim
Fe

G4{z; 6} = max 3

Here. ¢, gives the stress concentration and d, gives the distance over which the stress is
enhanced over the mean value, It should be understood that (13) applies only where the
stress enters the flaw function #(g). Obviously, the stress enhancement near the surface
comes at the expense of stress near the core. with the mean fiber stress being unaltered.

RESULTS

In this scction, we will compare the predictions of the ultimate tensile strength with
experimental results for two composite systems: Nicalont-reinforeed lithium-alumino-
sthicate glass ceramic, SiC/LAS. which was tested by Prewo (1986) and reaction bonded
silicon aitnide reinforced by silicon carbide fibers (SCS-6}), SiC/RBSN, which was tested
by Bhatt (1989). In addition, we will examine the sensitivity of these predictions to material
parameters.

Consider first SiC/LAS. in particular Prewo's sample no. 2369-7, for which the material
data ts presented in Table 1. Prewo determined the fiber strength and the strength dis-
tribution from fibers that were extracted from the composite material after fabricution,
Using strength data based on extracted fibers scems sensible, as these data presumably
reflect damage that oceurs during fabrication. For this system, g, versus g, is presented in
Fig. 4. This curve was generated by taking the interfacial shear stress ., to equal 3.0 MPa
and letting the specimen half~length L be 94, where the matrix-—crack spacing 2d = 400 um
{Muarshall and Evans, 1985). It can be scen that the stress 6, increases with increasing o
up to a maximum, and then starts to decrease. This maximum s the maximum stress that
a specimen of this length can withstand.

Calculations of the maximum net stress were carricd out for a range of specimen
lengths. Figure 5 shows the maximum stress o, as a function of the normalized specimen
fength L/d, for various values of the interfacial shear stress 1, (2d was held fixed at 400
um.} Note that the maximum net stress decreases as the specimen length increases, and it
approaches some fixed value as the specimen length becomes large. In the case of 1, =
5 MPa. for cxample, the asymptotic limit is, for all practical purposes, reached when the
specimen half-length is equal to five matrix-crack spacings. Note also that longer specimen
lengths are required to approach the asymptotic limit when the interfacial shear stress is
low ; obviously, one needs to account for more distant breaks, which can stilf have an effect
when the interfacial shear stress is low. This agrees with onc’s intuition that the length
required for a broken fiber to regain its load is greater for low interfacial shear stresses.
The greater this length, the greater will be the distance at which fiber breaks have a
significant influence.

It is significant, and fortunate, that the values of L at which the asymptotic limit is
practically reached are far less than typical specimen lengths. The greater is L. the more

t Nippon Carbon Company.
$ Textron Specialty Materials Division.
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Table 1. Experimental data for SiC LAS, Prewo’s sample no. 2369-7

v, E.E, a(ugm) m aers (MPa) o, (MPa) L, (mm)

0.46 042 8.5 38 758 1580 25

0.06 .
0.05 4
0.04 }
o @d™ 4]
0.02 J

0.01 4

0.00 . . .
0.0 0.1 02 0.3

Fig. 4. Normalized composite net stress as a function of the stress in an intact fiber at the matrix-
crack plane for SiC LAS (L = 94).

time consuming are the numerical integrations necessary for computing o, as a function
of 6,. Though one cannot precisely define it, the length at which the asymptotic limit is
essentially reached (L/d = 5 for the case of 1., = 5 MPa) is significant in its own right.
First, it gives one an idea of the minimum size composite which has esscntially the same
strength as the infinitely long, size-independent composite. Secondly, this length is certainly
of the same order of magnitude as Rosen’s inctlective length; that is, it is approximately
equal to aa/(2t,,). A more direct comparison between our prediction and the chain-of-
bundles prediction is given below. It is crucial to appreciate, however, that there is no need
to incorporate this length or any other length into our calculation ; it falls out naturally.

It is also possible to keep track of the fraction of intact fibers, the fraction of “‘once
broken™ fibers, and the fraction of “twice broken™ fibers. (That is, the fraction of fibers
that are intact within the segment — L <z < L, and the fractions of fibers that are once
broken und twice broken within that segment, ignoring breaks outside the segment.) These
fractions are shown in Fig. 6 for the casc of L = 9d and an interfacial shear stress 1, =
3.0 MPa. The contribution of the twice broken fibers is found to be relatively small. This
appears to be true for all the cases studied in this work, and that justifies neglecting higher
order corrections to the contribution of the broken fibers. Unlike the prediction of the
ultimate strength, which eventually becomes independent of L, the fractions of intact and
broken fibers continue to change with increasing L. In fact, the fraction of intact fibers will
continue to decrease with L for a fixed level of g, What will remain fixed is the fraction of
intact fibers per unit length of composite.,

Using the results from Fig. 5, the ultimate tensile strength (the asymptotic maximum

net stress for increasing L) can be plotted as a function of the interfacial shear stress 1,

Fig. 5. Maximum net stress as a function of normalized specimen length for SiC/LAS.
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Fig. 6. Fraction of broken and intact fibers as a function of stress in an intact fiber at the matrix
crack plane for SiC/LAS (L = 94).

(Fig. 7). Consider now a comparison with Prewo’s measured ultimate strength of 758 MPa.
As can be seen from Fig. 7. the present theory would predict this ultimate tensile strength
if the interfacial shear stress were approximately 3 MPa. This value compares reasonably
well with the values of interfacial shear stress that have been measured in this system
(Marshall and Evans, 1985).

Consider now the SiIC/RBSN. Bhatt (1989) measured the tensile strength of this
material (at a specimen-gauge length of S0 mm), and he repeated this measurement after
the material had been submitted to a 100 h heat treatment at 600°C in oxygen. This heat
treatment caused oxidation of the fiber-matrix interface, which decreased the apparent
interfacial shear stress, as estimated from the matrix-crack spacing. In addition, the oxi-
dation degraded the fiber surface couting and resulted in a decrease in fiber diameter and
a decrease in fiber strength. A summary of the data given by Bhatt for the two cases {case
2a before the heat treatment and case 2b after the heat treatment) is presented in Table 2,
Notice, however, that Bhatt determined the strength of the fibers in SiC/RBSN from the
as-received SCS-6 fibers ; to measure the strength of the fibers in the composite after the
heat treatment, he performed a similar heat treatment on a batch of as-received fibers and
determined their strength. In his interpretation, he assumed that the degradation in the
average tensile strength of individual fibers that were heat treated was similar to that of the
fibers in the composite.

The asymptotic limit of the maximum net stress, 6,0y, that is predicted for these cases
is 1036 and 631 MPa, respectively, Comparison of these values with the results of Table 2

00
1
300 J
Ciyrs
MPa) 700 4
H0 4
m Y Y Y T Ll "t
4] H 2 4 5 &

3
tmt (MPa)

Fig. 7. Ultimate tensile strength a5 a function of interfacial shear stress 1, for SiCLAS.

Table 2. Experimental data for SiC/RBSN, before (a) and after (b) heat treatment

Case V, ELJE, a{um) d{pm) mt 1 (MPa) gors (MPa) o, (MPa) L, {mm)

a 0.3 0.275 T 400 8 18 682 3800 50
b 0.3 0.275 71 6000 8 0.8 270 3200 50

+ Bhatt does not provide a measure for m with his fiber strength measurements in the cited reference. This value
for m was provided through personal communication.
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shows that for both cases the predictions considerably overestimate the actual strength. In
an attempt to explain this discrepancy we first examined the sensitivity of the model
predictions to several of the assumptions made in developing the theory. In particular, we
considered the assumption of using a constant shear stress model for ¢ (= ; g,), the assump-
tion of equal matrix—crack spacing and the assumption that the load transmitted across the
matrix—crack plane by the broken fibers is only dependent on the break closest to the matrix-
crack plane. We found that these assumptions had very little effect on our predictions. [More
details can be found in Schwietert (1990).] It is also possible that inaccuracies in the
constituent parameters could explain the differences between the predicted and the measured
values. To investigate this, we assess the sensitivity of the predictions to variations in
the Weibull modulus m, the interfacial shear stress t;,. and the mean fiber strength o,.
Furthermore, the influence of a possible stress concentration in the fibers near the matrix—
crack planes was examined.

First, the Weibull modulus m was varied, while holding the mean strength at the
original gauge length fixed ; this requires x to be altered with m. Figure 8 shows the predicted
ultimate tensile strength of SiC/LAS, normalized by the mean fiber strength (presented in
Table 1), as a function of the Weibull parameter m (1, fixed at 3.0 MPa). It can be seen
from Fig. 8 that the composite strength diminishes slightly when the fibers have a more
consistent strength. The analogous curves for SiC/RBSN are presented in Fig. 8 as well.
With increasing m., the strength of SiC/RBSN case 2b increases, while the strength of
SiC/RBSN case 2a first decreases, and then increases. An explanation of this effect is given
in Schwictert and Steif (1990).

We considered next the influence of the interfacial shear stress on the predictions. The
results of the prediction for SIC/LAS with changing t,,, are presented in Fig. 7; these results
show that the predicted strength increases with increasing interfacial shear stress. This trend
can be understood if one considers the influence of the interfacial shear stress on the stress
distributions (7). The fiber stress, as given by o4(z; ¢,), varies more rapidly with increasing
interfacial shear stress. Clearly, as 1, increases, the average axial fiber stress decreases in
some regions, and increases nowhere, Furthermore, the interfucial shear stress controls the
degree to which a fiber break diminishes the load-carrying capacity of the composite,
through its influence on the distribution of the stress in a broken fiber, a,(z,,2;d,). In
particular, when the interfucial shear stress is higher, the fiber regains its stress more
quickly from the break. Hencee, the ultimate strength increases with increasing t,,. Similar
caleulations were performed for the SIC/RBSN system, and similar trends were found.
However, the results also showed that inaccuracies in the interfacial shear stress can only
explain a small part of the differences between the predictions and the measured values.

Next, the dependence of the predictions on the mean fiber strength ¢, was examined.
Experiments by Prewo (1986) on Nicalon fibers demonstrate that the fibers do degrade
significantly during the fabrication of the composite. Prewo (1986} tested these fibers before
and after fabrication into SiC/LAS; for a gauge length of 25 mm, he measured mean fiber
strengths of 2300 and 1580 MPa, respectively. Since the SCS-6 fibers in the SiC/RBSN
specimen were tested before the fabrication, it seems likely that the actual strength of the
fibers inside the composite is less than the values presented in Table 2.

12,
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Fig. 8. Normalized ultimate tensile strength as a function of the Weibull modulus.
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To examine the effect of having an incorrect value for fiber strengths. we repeated the
calculations for the SiC,RBSN system. assuming different values for o,. As expected. the
results indicate that the predicted ultimate tensile strength is nearly proportional to the
mean fiber strength. In fact. the predictions would agree with the measured ultimate tensile
strengths. if o, were tuken to be 2270 MPa for SiC'RBSN case 2a and 1200 MPa for
SiC/RBSN case 2b. Clearly. the accuracy of this parameter has an important influence on
the predictions of the theory set forth here. and this can explain some of the differences
between theory and experiment.

Finally, we examined the influence of a stress concentration in the fibers. The cal-
culations of the strength of SiC/RBSN case 2a were repeated with the stress distribution
(13) replacing (7a). The results of these calculations are presented in Table 3. which shows
the uitimate tensile strength predictions for different values of ¢, and d,. Previous studies of
cracks impinging upon weak interfaces (Dollar and Steif, 1989, 1991 ; Schwietert and Steif,
1989, 1990b) suggest that the values for ¢, and ¢, are somewhere in the range presented in
Table 3. (As discussed earlier, ¢, is a measure of the enhancement of the stress at the fiber
surface; d, is the length over which it is enhanced.) A stress concentration can influence the
strength in two ways. First, since the stress at the fiber surface increases over some regions,
and decreases nowhere, the number of breaks for a given g, increases. Secondly, since the
increase in stress occurs near the matrix-crack plane, there will be more fiber breaks in the
vicinity of the central matrix—crack plance {and near other matrix-crack pluncs); these
broken fibers will contribute less to the load transmitted across the central matrix-crack
plane. Both cffects tend to decrease the composite strength. and the results of Table 3
indicate that, for this system, cven a small stress concentriation over a relatively short
distance can bring the predicted values down considerably. By contrast, the sensitivity to a
stress concentrittion is lower in the Nicalon-based system, where m is lower (= 3.8}
Greater variability in the fiber strength makes the composite less susceptible to locally
enhanced stresses.,

The studies of cracks impinging upon weak interfaces (Dollar and Stetf, 1989, 1991
Schwictert and Steif, 1989, 1990b) also suggest that the stress concentration in the fibers
increases with increasing interfacial shear stress. This means that the stress concentriation
parameters ¢, and o, are related to 1, Therefore, we repeated the calculations for SIC/RBSN
case 2a, and increased the interfacial shear stress and the stress concentration (¢, d) 1n
the fiber simultancousty. Since there is insuflicient quantitative information available to
determine precisely how ¢, and o, would change with increasing 1, this necessarily involves
some guesswork. The mean fiber strength was chosen to be 2270 MPa (at & gauge length
of 50 mm). The results of these caleulations are presented in Fig. 9. These results demonstrate
that the prediction of the ultimate tensile strength first inereases with increasing interfacial
shear stress, and then diminishes, Clearly, the effect of the stress concentration becomes
more important with increasing .., possibly reducing the composite strength,

Although the variation of ¢, and d, with t,, is speculative, the results of Fig. 9 arc
important, They represent a possible explanation for the complex dependence on the
interfacial shear strength that has been observed experimentally. We suggest that there are
two fundamental means by which the interfacial shear stress affects the composite strength.
First, the interfacial shear stress sets the load transfer rate. When the interfacial shear stress

Table 3. Predictions for the ultimate teasile .s'!(cnglh of S_i(“ RB.‘}.\' case a (in MPu,
including a stress concentration (o, d} in the fiber

d a
c 0.5 1o LS5 2.0 0 10 7.4
0.1 1032 1028 1026 1023 1017 1012 999
0.25 1024 1012 102 994 97N 961 938
0.5 992 963 941 924 SU8 878 ERLY
1.0 872 822 89 766 737 716 6749
20 640 600 574 356 S32 515 485

30 427 195 373 5% 340 328 309
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Fig. 9. Ultimate tensile strength as a function of the interfacial shear stress. including the effect of
increasing stress concentration.

is increased, a broken fiber regains its load faster; this tends to increase the composite
strength. [Sutcu’s (1989) model and Rosen’s (1965) chain-of-bundles model capture this
effect at least qualitatively.] The second major influence of the interface is to control the
stress concentrating effect of matrix cracks. When the interfacial shear stress is increased,
the stress near the fiber surface is increased ; this tends to decrease the composite strength.
This second effect may be more familiar in a slightly different context. Itis generally believed
that a relative low interfacial shear stress is beneficial in brittle-matrix composites, because
it leads to deflection of matrix cracks at fibers. As suggested recently by Dollar and Steif
(1991), it may be more useful to compare different interfaces on the basis of their differing
tendencics to cause a stress concentration, In applying this idea to ultimate strength, we are
distinguishing between different interfacial shear strengths, all of which are sufficiently low
to allow multiple matrix cracking.

Returning to Fig. 9, one can sce that the load transfer effect dominates at low interfacial
shear strengths, whereas the stress concentration effect dominates at higher interfucial shear
strengths. Consider, for example, an SiC/LAS which has been subjected to an oxidizing
environment ; this removes the carbon surface layer and bonds the fiber to the matrix, With
the typical degree of oxidation, this tends to reduce the composite strength. The stress
concentration effect scems to be dominating here, even to the extent that multiple matrix
cracking may not be permitted. On the other hand, oxidizing SiC/RBSN, which scems to
remove the carbon layer leaving the smaller diameter fiber to rattle in its matrix socket,
results in a loss of composite strength. In this case, the load transfer effect appears to
dominate (though loss in mean fiber strength is always a possibility which must be con-
sidered). The results of Lowden (1990) on Nicalon-reinforced silicon carbide appear to be
quite consistent with our proposed explanation of interfacial shear strength dependence.
At low interfacial shear strengths, the composite strength increases with the interfacial shear
strength, reflecting the dominance of the load transfer mechanism. At high interfacial shear
strengths, composite strength decreases with the interfacial shear strength, reflecting the
dominance of the stress concentration mechanism. Clearly, this suggests that there is, in
fact, an optimum interfacial shear strength, though a considerable amount of work remains
to be done to identify that optimum.

Finally, the predictions of the present theory are compared with Rosen’s readily used
chain-of-bundles model. Obviously, this comparison is only fair if effects due to stress
concentrations are neglected. (In composite systems where the stress concentration effects
are significant, the chain-of-bundles model would clearly be inadequate.) In this comparison,
we assume that the interfacial shear stress, t,,, and the fiber strength distribution are given,
Rosen’s chain-of-bundles model requires a calculation of the ineffective length. L,,.«, which
is the length over which some percentage (e.g. 90%) of the load is transferred back to the
fiber. For a Weibull distribution, Rosen's prediction of the composite strength is then given
by (5).

In Rosen’s original model, the ineffective length is inferred from a shear-lag analysis
of a fiber which is elastically bonded to a matrix (which is why a percentage less than 100%
must be used in defining the ineffective length). For a composite with a fixed interfacial
shear stress t,,. the ineffective length is generally defined to be
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de
Loy = — (19

2
= tmnt

where o, s t}w mean fiber strength. This is the length necessary to transfer a load which is
equal to na-o,. For a Weibull distribution, the mean fiber strength actually depends on
length : we, therefore. take o, to be the mean fiber strength for a fiber of length L. which
implies

(’r(; + !Sm}{z)’"m”
Loy = L0 Lm0 (15)

2 {0t

The chain-of-bundles prediction would emerge from substituting (15) into (5).

The chain-of-bundles prediction is compared with our predicted o1 for the same set
of purameters x. m and t,, by asking the inverse question ; what fiber bundle has the same
strength as our predicted a¢,”? The fibers in this bundle have length L, v, where

Lppg = e, (16)

If Lips were equal to L. then our theory and the chain of bundles model would
agree. To compare these lengths, the quantity fis formed:

2[‘ ‘rml
fr=""t" (17)

ao,

where @, is the mean strength of a fiber of length £, 1 /8 were found to equal 1, then the
lengths would be the same:: instead, we found values of 1o be between 0.36 and 0.59. The
difference between ffand 1 seems to be the error that Rosen incurred in reconfiguring the
distribution of breaks into a chain of bundles. In fact, we can use Rosen's chain of bundles
prediction (5) if we take the ineffective length equal to L, which is defined as

t (72 i
Lo = (r( f*f}/"”)fa) .

et
2rll“ (1) "

instead of (15). Choosing f# to be equal to 0.50 consistently gives results which are within
5% of our predictions, provided any stress concentration effects can be safely neglected.

CONCLUSIONS

A theory for ultimate tensile strength which is particularly suited to ceramic-matrix
composites exhibiting multiple matrix crucking has been presented. This theory accounts
for the random failure of fibers at flaws, and it utilizes a generalization of the notion of
equal load sharing. The theory was used to predict the ultimate tensile strength for two
composite systems. In the case of a Nicalon-reinforced lithium alumino-silicate glass-matrix
composite, the theory agrees well with experiment, provided the in situ fiber strength is
used (for instance, as measured on fibers extracted after composite fabrication). By contrast,
the agreement with some experimental results for SiC-retnforeed, silicon nitride composite
is quite poor. To understand the possible sources of discrepancy, the sensitivity of the
predictions to key material parameters, including fiber strength, fiber strength variability,
and interfacial shear strength, was investigated. In addition, the effect of a focally enhanced
stress at the fiber surface near the matrix—crack planes was considered. The two most likely
sources of the discrepancy appear to be neglecting the loss in fiber strength associated with
fubrication, and neglecting the stress enhancement associated with the matrix cracks. It is
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proposed that the stress concentration associated with matrix cracks could explain the non-
monotonic dependence of composite strength on interfacial shear stress which is observed
in some systems.
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